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Abstract: An intelligent health monitor for rotating machinery is presented that integrates proven
neural network and fuzzy logic technologies with rotordynamic, finite-etement modeling. A rotor
demonstration rig is used as a proof of concept tool. The approach integrates rotor shaft vibration
measurements with detailed, rotordynamic, finite-element models through a fuzzy-neuro scheme
which is specifically developed to respond to the rotor system being monitored. The advantage of
this approach over current methods lies in the use of a neural network classifier and fuzzy logic
reasoning algorithms. The real-time neural network is trained to contain the knowledge of a
detailed finite-element model whose results are integrated with system measurements to produce
accurate machine fault diagnostics and component stress predictions. The availabilty of these real-
time stresses allows for critical component life estimates to be calculated during machine operation.
Fuzzy logic is implemented to overcome system measurements uncertainties, provide machine fault
severity information, and make informed decisions about maintenance actions that should be
performed based on operator experience.

Key Words: Artificial Intelligence, Diagnostics, Condition Monitoring, Neural Networks, Fuzzy
Logic, Rotor Dynamics, Finite Element Models, Real-Time, Health Monitoring.

Introduction: Over the last several years, the practical strengths and weaknesses of applying
neural networks and fuzzy logic in real-world condition monitoring systems have become more
clear. Namely, pattern recognition based neural networks do not work very well on inconsistent or
changing failure modes that many different types of machines exhibit (turbo-machinery in
particular). In addition, the system specific training data required for training a neural network to
recognize common machinery faults is typically not available. Also, fuzzy logic schemes do not
lend themselves easily to modeling complex, nonlinear systems due to the large rulebases that
would need to be generated for proper accuracy. However, by recognizing the Dractical
capabilities of each of these technologies, a system developer can judiciously implement the
individual technical benefits of each to meet the demands of more reliable and accurate condition
health monitoring.



Utilizing the system modeling strengths of neural networks, machinery component finite element
models can be represented with neural networks. By training a neural network from parametric
analysis performed with a FE model, critical component stresses can be predicted in real time.
These real-time, monitored stresses can then be used in LCF/HCF fatigue life algorithms to
monitor critical component life damage as the machine is operating. In addition, the strengths of
fuzzy logic can be utilized to minimize the effects of measurement uncertainties and system non-
linearities. Confirmed fault diagnosis (based on operator experiences) and fault severity monitoring
is also easily accomplished with fuzzy logic algorithms.

This paper demonstrates a fuzzy-neuro system (i.e. a system the implements both fuzzy logic and
neural networks) for improving the present state-of-art in machinery health monitoring by
inereasing the effectiveness and reliability of mechanical diagnostics and component life
monioring. Specifically, a traineG network is used to process relevant system sensor data in order
to make informed decisions on a rotor's mechanical health and monitor critical rotor stresses. The
real-time cyclic stresses are then analyzed by a damage accumulation algorithm to report a
remaining component life estimate. A fuzzy logic scheme is developed to monitor the severity of
the diagnosed fault, check the diagnosis performed by the neural network, and report on the
maintenance action required to correct the fault.

Rotor Demonstration Rig: A rotor rig was constructed to demonstrate the concepts proposed in
this paper on actual hardware. The demonstration rig was designed to be versatile enough to
duplicate various vibration-producing phenomena found in all type of rotating systems. Many
different types of vibration related characteristics were created and measured by changing rotor
speed, degree of unbalance, degree of misalignment, shaft rub, and rotor bearing clearances. The
resulting dynamic characteristics are measured with proximity probes and/or accelerometers and are
processed with a multi-channel dynamic signal analyzer. The rotor configuration utilized in this
paper is shown in Figure 1.

Two roller bearings support the motor armature, while four, oil impre-nated, bronze sleeve
bearings are positioned between the various couplings and disks. A solid 36" aluminum base with
adjustable bearing pedestal locations and rubber isolation feet provide sufficient rigidity to the rotor
configuration. Motor speed control is maintained with a proportional speed feedback algorithm,
with speed sensed by a dedicated proximity probe and toothed wheel.

Seeded faults were introduced into the rotor demonstration system by applying mass unbalances to
the disks, misalignment across the rigid coupling, loosening the bearing pedestals, and installing
pre-wom bearings. Under each of these conditions, measurements were obtained from each of four
proximity probes to determine the magnitude and phase of each transducer with respect to the
reference key phaser. The specific magnitude and phase measurements were logged into a database
and used in the neural network training procedure.
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FIgure 1 Rotor Demonstration Rig

Rotor Dynamics F'inte Element Model: A detailed finite element model of the rotor
demonstration aystem was developed and correlated with measured experimental data. This
computer model was used to simulate ,otor operation and to tra t the neural network cl, ýsifiers. In
particular, the network was trained from the model to determine dynamic stresses anu forces in
critical mechanical components. Figure 2 illustrates the first critical mode associated with the
finite element model. In addition, the model predicts overall rotor vibratory characteristics as well
as local vibratory stress levels. The real value in having a finite element model based diagnostic
system is that it provides a very accurate picture of the rotor stress distribution and reaction forces.
These stresses and forces are the cause of many of the component failures in the rotor, bearings,
seals, etc. With the rotating shaft component stresses predicted, an automated life analysis
algorithm will be able to determine what the expected component life will be with any damage
condition.

Figure 2 Calculated First Critical Rotor Mode



Fuzzy-Neuro System Development: The fuzzy-neuro system architecture developed in this paper
provided for efficient measurement data processing and resulted in confirmed diagnoses of the rotor
mechanical faults and rotor shaft component life estimation. A block diagram of the developed
system architecture is given in Figure 3. In this figure, the "Diagnostics" block represents the
neural network classifier, the "Fault Severity" and "Maintenance" blocks represent the fuzzy logic
membership functions and rulebases, and the "Life Module" block contains the life accumulation
algorithm. The system was developed as a stand-alone application comprising multiple functions
and a single executable file to assist system testing and verification.

The complete diagnostic system shown in Figure 3 consisted of 6 transducer inputs and 4 diagnostic
related outputs. The system inputs included four bearing vibration signals, relative phase across the
shaft coup'Hng, and rotor speed. A neural network was used to map specifiz one per-rev rotor
responses to corresponding unbalances or misalignments as well as predict shaft stresses based on
FE model training. The outputs of the "Diagnostic" neural network predict the probability of
having an unbalance in balar ing plane 1, balancing plane 2, or a misalignment across the
coupling. The "virtual sensor" outputs of the network predict the stresses at two critical locations
on the shaft. These real-time shaft stress are transferred simultaneously with the rotor speed
measurements to the component "Life" module. The component life module continuously
computes and updates the remaining fatigue life associated with the maximum cyclic shaft stress
monitored during the current start/stop cycle.

The bearing vibration measurements are also processed by a "Fault Severity" fuzzy logic module.
Processing the raw measurement data allows the fault severity module to perform a check on the
network diagnosis as well as performing its standard function of determining the severity of a
diagnosed fault. The outputs of this "fuzzy" module indicate the severity of an unbalance
condition or coupling misalignment in linguistic terms such as "severity is minor", "severity is
moderate", etc.

The final module entitled "Maintenance" accepts data from the output of Diagnostic" neural
network and "Fault Severity" fuzzy logic. By examining the diagnosed fault and -- ociated fault
severity, this module recommends specific maintenance actions that should be performed by the
operator in linguistic terms. For example, if a fault is diagnosed as an unbalance condition in
plane 2 with a severity level of minor, the "Maintenance" module would prompt the operator to
monitur this situation over the next several days to see if the condition is worsening. If time passes
and the unbalance severity worsens to a moderate level, then the maintenance action might be to
"monitor condition very closely". Finally, if the severity continues to worsen, then a "shut down
and balance plane 2" message would be given to the operator. The complete fuzzy-neuro system
comprised of the diagnostic, fault severity, life, and maintenance modules is described next.
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Neural Network Module: The neural network configuration illustrated in Figure 4 utilizes four

bearing vibration input measurements and relative phase information across the flexible coupling to

yield 5 input nodes to the network. One hidden layer, consisting of 10 nodes, is used to increase

the "flexibility" of the network. Hidden layers, when used properly, can provide more accurate

correlation between complex, linear and nonlinear training patterns. The output layer of the

network consists of 5 nodes.

The first three output nodes of this network configuration diagnose the gross fault condition as

either; 1.) an unbalance in balance plane 1, 2.) an unbalance in balance plane 2, or 3.) a

misalignment across the coupling. The remaining two output nodes give important "virtual

sensing" information about shaft stresses at two critical locations.

Virtual sensing refers to indirec• ly measuring a parametel such as shaft stress by matching patterns

of directly sensed data (such as bearing displacement) with a finite element model to yield an

accurate measurement of the unmeasured parameter. For the demonstration rotor system, the shaft

bending stresses are calculated using a detailed finite-element i odei of the rotor for tx 'icular -'•tor

conditions. The neural network is then trained to recognize the sensed patterns and relate them to

the values calculated from the model. The result is a neural network (trained from measurements

and FE model) that is capable of "virtually" sensing stresses on particular components in real time

without actually having installed strain gages on-board.

Training the neural network involved evaluating the weights and thresholds of the numerous

interconnections between the input and output layers. This was conducted utilizing a supervised

training procedure. The supervised training technique specifies what target outputs should result

from an input pattern. The neural network variables (weights and thresholds) are then self adjusted

to generate that target output. The training procedure utilized a back propagation least-square error

approach to achieve the desirable network accuracy. Network training was based on experimental
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case histories and analytically derived input/output pairs resulting from the rotor dynamics
computer model.

BEARING #1 UNBALANCE DISK 1 (0-100%)

BEARING #2 UNBALANCE DISK 2 (0-100%)

BEARING #3 MISALIGNMENT (0-100%)

BEARING #4 BENDING STRESS DISK 1 (psi)

PHASE BENDING STRESS DISK 2 (psi)

Figure 4 Neural Network Architecture

The network architecture was trained with 50 input/output training patterns devised from both
experimental measurements and the finite element model analysis. The training patterns of the
network database focused on diagnosing mass unbalance conditions, coupling misalignment, and
shaft stresses. As an example, experimental data was collected from the rig to train the neural
network to distinguish the differences between misalignment and an unbalance condition. Both of
these conditions exhibit similar one/rev vibration characteristics. Phase angle measurements were
obviously very important for the network to make this distinction.

The rotordynamics finite element model was exercised extensively with numerous unbalance force
and shaft misalignment conditions. The results from each run of the finite element model yielded
steady-state shaft bonding stresses for each of these forcing conditions. The ' results were then
used in conjunction with the measured data to build the training pattern database.

Fuzzy Logic Modules: Two fuzzy logic modules were developed for the rotor health monitoring
system. First, a "Fault Severity" fuzzy logic scheme was introduced to monitor the level of risk a
particular fault is producing. This severity level is calculated from the raw transducer
measurements and therefore acts as a check for the neural network diagnosis. The outputs of the
fault severity module are combined with the outputs of the diagnostic network to form the six inputs
to the "Maintenance" module. The maintenance module examines any diagnosed fault and
corresponding level of severity to determine the best action to be performed by the machine
operators.

The "Fault Severity" module utilizes four bearing vibration inputs to determine three fault severity
outputs. Fuzzy logic membership functions and corresponding rulebase were developed for each
input and output variable. An example of an output variable membership function is given in
Figure 5.
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Figure 5 Fault Severity Membership Function

The fault severity membership functions were developed based on the experienced gained from
operating the rotor demonstration rig. For example, the vibration amplitudes measured near
bearing 1 were consistently higher than the levels measured near bearing 4. Therefore, the
corresponding membership functions must represent this knowledge accurately. The rulebase
developed from the vibration patterns exhibited from the unbalance and misalignment seeded faults
were accurately represented with only 16 rules. A representative rule would be; (IF bearing_1 IS
high) AND (bearing_2 IS low OR bearing_2 IS mediumilow), THEN coupling misalignment
severity is severe. The combination of the input/output membership functions and rulebase make
up the knowledge of the fault severity module. A product-sum fuzzy inference method was used to
scale and combine the membership functions, while the centroid technique was used for
defuzzification.

The maintenance fuzzy lo•,ic module was developed similarly to the fault severity module ,,cept
six input and three output membership functions were needed. The rulebase consisted of 22 rules
that primarily examined the relationship between a diagnosed fault and corresponding severity
level. An example rule is; IF unbalance_plane_2 IS high AND unbalance_2_severity is severe,
THEN shut down balance plane 2. Maintenance module outputs for a plane 1 unbalance, plane 2
unbalance, or coupling misalignment are described as either "operational", "to be monitored", "to
be monitored closely", or "shut down".

Component Life Module: A fatigue life algorithm was developed that utilizes the virtually sensed
shaft stresses as a basis for computing fatigue initiation life. The algorithm estimates the amount of
time to crack initiation, with crack propagation not being considered. Neuber's Rule is used to
compute the true stress and strain in the crack initiation region. Morrow's Method is used to
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incorporate the mean stress effects in the life calculations, which are based on strain-amplitude and
the number of reversals. Miner's Law computes the cumulative fatigue damage.

Strain-Life Equation: The local strain approach was used to calculate the total strain, 8, including
elastic and plastic components, from the given stress state and the fatigue properties of material:

6 = (cro-O-) (2Nf)b/E+ 6f(2 Nf)c

where E is the elastic modulus, co is the true mean stress or the true steady stress, and Nf is the
number of cycles required for crack initiation. In the right hand side of the equation, the first term
represents an elastic strain and the second term represents a plastic strain. This equation is the
foundation for the cyclic strain-based approach to fatigue prediction and is usually called the strain-
life equation.-

Cycle Counting and Cumulative Damage: Under spectral loading, the dynamic strain conditions
at critical locations of a component may have very complex waveforms. Several procedures exist
to deal with this situation, of which, the Rainflow cycle counting procedure is well known. Simply
stated, this procedure consists of dividing the complex waveform into a sequence of simple cycles,
and then counting the number of strain cycles within a given strain range. The resulting number is
then compared with the tested fatigue life of the material at this strain level to determine the degree
of incremental damage. The best known cumulative damage assessment procedure is Miner's Law,
which states that the cumulative damage is equal to the sum of the incremental damage at the
various strain ranges.

Sn i 1;
Ni

this procedure is utilized in this fatigue life algorithm. The number of cycles ni occurring at a given
strain level is first computed from the Rainflow cycle counting procedure. The number of cycles to
failure at each strain level, Ni , is based on test sample data and adjusted for mean stress effects.
This is .- Zained from the strain-life equation. The portion of damage at this strain level becomes
ni/Ni. The summation sign in the Miner's Law equation indicates that the cumulative damage is the
sum of damage portion due to all existing strain levels. Accordingly, the crack initiation is
expected to occur when the cumulative damage is equal to or greater than unity.

System Verification and Test Results: Several parametric tests were conducted involving seeded
fault conditions applied to the demonstration rotor system. Accuracy of the neural network
diagnostic outputs, fuzzy logic module outputs, and overall system outputs were compared with the
"true" seeded fault condition. As an example, if a "minor" mass unbalance was imposed on disk
#1, then the network diagnostic output should ideally respond "100 percent chance of unbalance on
disk #1", the fault severity module respond as "severity is minor", and the overall system output
should respond "monitor disk #1 unbalance.



To convey the diagnostic and life monitoring testing results most completely, a worsening
unbalance condition was subjected to balancing plane 1 of the demo rotor rig. At first, sensor
measurements were acquired from the rig under the absence of the unbalance condition. Next, data
was acquired after a "minor" unbalance of 0.05 oarce-inches was applied to disk 1. Consecutive,
unbalance magnitude increases were applied to disk 1 until a "severe" unbalance of 0.25 ounce-
inches was reached. A sample of the output data file showing four discrete testing results is given
in Figure 6.

The four discrete system outputs resulted from four sets of measurement data acquired from the
rotor rig over a large time frame. During actual monitoring system operation, a system output
describing unbalance, misalignment, and shaft life status is provided for every set of transducer
measurements acquired. Reported system monitoring results can be provided at user specified
intervals.

Several seeded fault conditions were examined similar to the one described above. The rotor
monitoring system was capable of accurately tracking a worsening rotor fault cc•...'ition as well as
monitor : -maining life of the rotor shaft. The system "fuzzy" outputs describe to . machine
operator what steps he/she should take as a condition worsens.

- Life Module Results: Stress 1 = 6.787332 Stress 2 = 7.724948

Coupling Alignment Is Operational
Balancing Plane 1 Is Operational
Balancing Plane 2 Is Operational
Remaining Shaft Life = 0.000000e+00 years

- Life Module Results: Stress 1 = 86.611595 Stress 2 - 18.802980

Coupling Alignment Is Operational
Balancing Plane 1 Should Be Monitored
Balancing Plane 2 Is Operational
Remaining Shaft Li.e = 3.784470e+31 years

- Life Module Results: Stress 1 = 159.930435 Stress 2 = 38.713123

Coupling Alignment Is Operational
Balancing Plane 1 Should Be Monitored Close7 y
Balancing Plane 2 Is Operational
Remaining Shaft Life = 7.918761e+16 years

- Life Module Results: Stress 1 = 263.891205 Stress 2 = 61.637596

Coupling Alignment Is Operational
Balancing Plane 1 Should Be Re-Balanced ASAP
Balancing Plane 2 Is Operational
Remaining Shaft Life = 2.503154e+15 years

Figure 6 System Testing Results



Conclusions: A fuzzy-neuro machine health monitor that performs both mechanical diagnostics
and component life prediction was demonstrated with the use of a miniaturized rotor system. The
rotor system was subjected to mechanical fault scenarios including; mass unbalances and coupling
misalignments in order to examine the benefits of utilizing fuzzy-neuro technologies for monitoring
rotating machinery. A neural network classifier was able to accurately diagnose mechanical faults
based on the associated vibration signatures measured from the desktop system. Fuzzy logic was
used to determine fault severity levels and make decisions on required maintenance action. In
addition, component life accumulation was monitored based on the diagnostic outputs provided by
the neural network

The concept of training neural network classifiers with both rotor system measurements and
detailed finite element models is highlighted as a significant advancement in condition monitoring
applications. The rotor dynamics finite element model was used to trait the dia--.3stic network to
recognize fault patterns and their resulting effect on shaft stres s. This real-time, "virtual" sensing
of shaft stresses allows for component life monitoring to be achieved in real-time. In other words,
the ability of the neural networks to recognize particular vibration signatures and correlate them
with associated shaft stresses is of particular significance.

Finally, through the use of fuzzy logic, the diagnostic system provided the necessary robustness to
measurement noise and changing failure mode vibration patterns. In addition, by processing the
raw transducer inputs in both the diagnostic neural network and fuzzy logic scheme simultaneously,
increased accuracy of the diagnosed faults and corresponding corrective action recommendations
was accomplished while preserving the real-time requirement of the system.
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